The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176411 A symmetrical triangle of leading ones adjusted polynomial coefficients based on Hermite orthogonal polynomials: t(n,m)=CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1 0
 1, 1, 1, 1, -1, 1, 1, -19, -19, 1, 1, -27, -123, -27, 1, 1, 89, -191, -191, 89, 1, 1, 57, 297, 57, 297, 57, 1, 1, -1807, -1471, 3233, 3233, -1471, -1807, 1, 1, -1935, -18959, -1935, 24945, -1935, -18959, -1935, 1, 1, 29729, -9727, -81151, 47873, 47873, -81151 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Row sums are: {1, 2, 1, -36, -175, -202, 767, -88, -20711, -26550, 337835,...}. Sequence A176410 was discovered by a typing mistake; I left out the plus signs and Mathematica made it multiplication instead. LINKS Table of n, a(n) for n=0..51. FORMULA t(n,m)=CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1 EXAMPLE {1}, {1, 1}, {1, -1, 1}, {1, -19, -19, 1}, {1, -27, -123, -27, 1}, {1, 89, -191, -191, 89, 1}, {1, 57, 297, 57, 297, 57, 1}, {1, -1807, -1471, 3233, 3233, -1471, -1807, 1}, {1, -1935, -18959, -1935, 24945, -1935, -18959, -1935, 1}, {1, 29729, -9727, -81151, 47873, 47873, -81151, -9727, 29729, 1}, {1, 29217, 308577, 29217, -212703, 29217, -212703, 29217, 308577, 29217, 1} MATHEMATICA t[n_, m_] := CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A305238 A004460 A082126 * A131382 A291475 A057430 Adjacent sequences: A176408 A176409 A176410 * A176412 A176413 A176414 KEYWORD sign,tabl,uned AUTHOR Roger L. Bagula, Apr 16 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 01:27 EDT 2024. Contains 375813 sequences. (Running on oeis4.)