|
|
A176411
|
|
A symmetrical triangle of leading ones adjusted polynomial coefficients based on Hermite orthogonal polynomials: t(n,m)=CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1
|
|
0
|
|
|
1, 1, 1, 1, -1, 1, 1, -19, -19, 1, 1, -27, -123, -27, 1, 1, 89, -191, -191, 89, 1, 1, 57, 297, 57, 297, 57, 1, 1, -1807, -1471, 3233, 3233, -1471, -1807, 1, 1, -1935, -18959, -1935, 24945, -1935, -18959, -1935, 1, 1, 29729, -9727, -81151, 47873, 47873, -81151
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
Row sums are:
{1, 2, 1, -36, -175, -202, 767, -88, -20711, -26550, 337835,...}.
Sequence A176410 was discovered by a typing mistake;
I left out the plus signs and Mathematica made it multiplication instead.
|
|
LINKS
|
|
|
FORMULA
|
t(n,m)=CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1
|
|
EXAMPLE
|
{1},
{1, 1},
{1, -1, 1},
{1, -19, -19, 1},
{1, -27, -123, -27, 1},
{1, 89, -191, -191, 89, 1},
{1, 57, 297, 57, 297, 57, 1},
{1, -1807, -1471, 3233, 3233, -1471, -1807, 1},
{1, -1935, -18959, -1935, 24945, -1935, -18959, -1935, 1},
{1, 29729, -9727, -81151, 47873, 47873, -81151, -9727, 29729, 1},
{1, 29217, 308577, 29217, -212703, 29217, -212703, 29217, 308577, 29217, 1}
|
|
MATHEMATICA
|
t[n_, m_] := CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|