login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176410
A symmetrical triangle of adjusted polynomial coefficients based on Hermite orthogonal polynomials.
2
1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, -191, 2113, -191, 1, 1, 1, 1, 1, 1, 1, 1, 7681, -337919, 7681, -337919, 7681, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -430079, 47738881, -430079, 180203521, -430079, 47738881, -430079, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 11, 4, 1733, 6, -652793, 8, 273960969, 10, -143712092149, ...}.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 9, 1;
1, 1, 1, 1;
1, -191, 2113, -191, 1;
1, 1, 1, 1, 1, 1;
1, 7681, -337919, 7681, -337919, 7681, 1;
1, 1, 1, 1, 1, 1, 1, 1;
MATHEMATICA
T[n_, m_]:= CoefficientList[HermiteH[n, x], x][[m + 1]]Reverse[ CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[ HermiteH[n, x], x][[1]]Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1;
Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten
CROSSREFS
Cf. A060821.
Sequence in context: A113061 A366904 A284099 * A087966 A087968 A340365
KEYWORD
less,sign,tabl
AUTHOR
Roger L. Bagula, Apr 16 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 26 2019
STATUS
approved