|
|
A176410
|
|
A symmetrical triangle of adjusted polynomial coefficients based on Hermite orthogonal polynomials.
|
|
2
|
|
|
1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, -191, 2113, -191, 1, 1, 1, 1, 1, 1, 1, 1, 7681, -337919, 7681, -337919, 7681, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -430079, 47738881, -430079, 180203521, -430079, 47738881, -430079, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Row sums are: {1, 2, 11, 4, 1733, 6, -652793, 8, 273960969, 10, -143712092149, ...}.
|
|
LINKS
|
|
|
EXAMPLE
|
Triangle begins as:
1;
1, 1;
1, 9, 1;
1, 1, 1, 1;
1, -191, 2113, -191, 1;
1, 1, 1, 1, 1, 1;
1, 7681, -337919, 7681, -337919, 7681, 1;
1, 1, 1, 1, 1, 1, 1, 1;
|
|
MATHEMATICA
|
T[n_, m_]:= CoefficientList[HermiteH[n, x], x][[m + 1]]Reverse[ CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[ HermiteH[n, x], x][[1]]Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1;
Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|