login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113061
Sum of cube divisors of n.
11
1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 73, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 28, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9
OFFSET
1,8
COMMENTS
Multiplicative with a(p^e) = (p^(3*(1+floor(e/3)))-1)/(p^3-1). The Dirichlet generating function is zeta(s)*zeta(3s-3). The sequence is the inverse Mobius transform of n*A010057(n). - R. J. Mathar, Feb 18 2011
FORMULA
G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)). - Ilya Gutkovskiy, Dec 24 2016
a(n) = Sum_{d|n} A010057(d)*d. - Antti Karttunen, Oct 08 2017
Sum_{k=1..n} a(k) ~ zeta(4/3)*n^(4/3)/4 - n/2. - Vaclav Kotesovec, Dec 01 2020
MAPLE
A113061 := proc(n)
local a, pe, p, e;
a := 1;
for pe in ifactors(n)[2] do
p := pe[1] ;
e := pe[2] ;
e := 3*(1+floor(e/3)) ;
a := a*(p^e-1)/(p^3-1) ;
end do:
a ;
end proc:
seq(A113061(n), n=1..100) ; # R. J. Mathar, Oct 08 2017
MATHEMATICA
a[n_] := Sum[If[IntegerQ[d^(1/3)], d, 0], {d, Divisors[n]}];
Array[a, 100] (* Jean-François Alcover, Nov 25 2017 *)
f[p_, e_] := (p^(3*(1 + Floor[e/3])) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
PROG
(PARI) A113061(n) = sumdiv(n, d, ispower(d, 3)*d); \\ Antti Karttunen, Oct 08 2017
(Scheme)
;; With memoization-macro definec, after the multiplicative formula of R. J. Mathar:
(definec (A113061 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (+ -1 (expt p (* 3 (+ 1 (A002264 e))))) (+ -1 (expt p 3))) (A113061 (A028234 n)))))) ;; Antti Karttunen, Oct 08 2017
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Paul Barry, Oct 13 2005
STATUS
approved