OFFSET
1,8
COMMENTS
Multiplicative with a(p^e) = (p^(3*(1+floor(e/3)))-1)/(p^3-1). The Dirichlet generating function is zeta(s)*zeta(3s-3). The sequence is the inverse Mobius transform of n*A010057(n). - R. J. Mathar, Feb 18 2011
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..19683
R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038 [math.NT] (2011), Remark 15.
FORMULA
G.f.: Sum_{k>=1} k^3*x^(k^3)/(1 - x^(k^3)). - Ilya Gutkovskiy, Dec 24 2016
a(n) = Sum_{d|n} A010057(d)*d. - Antti Karttunen, Oct 08 2017
Sum_{k=1..n} a(k) ~ zeta(4/3)*n^(4/3)/4 - n/2. - Vaclav Kotesovec, Dec 01 2020
MAPLE
A113061 := proc(n)
local a, pe, p, e;
a := 1;
for pe in ifactors(n)[2] do
p := pe[1] ;
e := pe[2] ;
e := 3*(1+floor(e/3)) ;
a := a*(p^e-1)/(p^3-1) ;
end do:
a ;
end proc:
seq(A113061(n), n=1..100) ; # R. J. Mathar, Oct 08 2017
MATHEMATICA
a[n_] := Sum[If[IntegerQ[d^(1/3)], d, 0], {d, Divisors[n]}];
Array[a, 100] (* Jean-François Alcover, Nov 25 2017 *)
f[p_, e_] := (p^(3*(1 + Floor[e/3])) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
PROG
(PARI) A113061(n) = sumdiv(n, d, ispower(d, 3)*d); \\ Antti Karttunen, Oct 08 2017
(Scheme)
;; With memoization-macro definec, after the multiplicative formula of R. J. Mathar:
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Paul Barry, Oct 13 2005
STATUS
approved