login
A113064
a(n) = numerator of r(n), where r(n) = the continued fraction of rational terms [1,3/2,11/6,...,H(n)], where H(n) = sum{j=1..n} 1/j, the n-th harmonic number.
2
1, 5, 67, 2035, 327035, 18466715, 7619115545, 6522042157745, 51871686471116105, 424282494361851819005, 39140577420952910465839555, 3692929600143446269942515952655, 4623053713106560878635060477474217415
OFFSET
1,2
EXAMPLE
For n = 3 we have 1 + 1/(3/2 + 6/11) = 67/45, the numerator of which is 67.
PROG
(PLT Scheme) ;; (harmonic n) gives the n-th partial sum of the harmonic series.
;; cf->frac is a utility that converts a continued fraction to a fraction.
(define (A113064 n)
(numerator (cf->frac (build-list n (lambda (k) (harmonic (add1 k))))))) ;; Joshua Zucker, May 08 2006
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Oct 13 2005
EXTENSIONS
More terms from Joshua Zucker, May 08 2006
STATUS
approved