login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113067
Expansion of -x/((x^2+x+1)*(x^2+3*x+1)); invert transform gives signed version of tetrahedral numbers A000292.
4
0, -1, 4, -11, 28, -72, 188, -493, 1292, -3383, 8856, -23184, 60696, -158905, 416020, -1089155, 2851444, -7465176, 19544084, -51167077, 133957148, -350704367, 918155952, -2403763488, 6293134512, -16475640049, 43133785636, -112925716859, 295643364940, -774004377960
OFFSET
0,3
COMMENTS
Invert((a(n)) gives (0, -1, 4, -10, 20, -35, ) = A000292 (with alternating signs).
Binomial(a(n)) gives (0, -1, 2, -2, 4, -7, 10) = A094686 (with alternating signs, from 2nd term).
Floretion Algebra Multiplication Program, FAMP Code: 2basei[C*F]; C = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'; F = + .5'i + .5'ii' + .5'ij' + .5'ik'
REFERENCES
C. Dement, Floretion Integer Sequences (work in progress).
FORMULA
a(n) + a(n+1) + a(n+2) = (-1)^n *A001906(n+2) = (-1)^n*F(2n+4).
a(n) + 3*a(n+1) + 3*a(n+2) + a(n+3) = ((-1)^(n+1))*A109961(n+2).
(|a(n)|) = A290890(n) for n >= 0, this being the p-INVERT of (1,2,3,4,...), where p(S) = 1 - S^2. - Clark Kimberling, Aug 21 2017
a(n) = -4*a(n-1) - 5*a(n-2) - 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, May 11 2019
2*a(n) = (-1)^n*A001906(n+1) - A049347(n). - R. J. Mathar, Sep 20 2020
MATHEMATICA
-x/((x^2+x+1)*(x^2+3*x+1)) + O[x]^30 // CoefficientList[#, x]& (* Jean-François Alcover, Jun 15 2017 *)
PROG
(SageMath) [((lucas_number1(n, 3, 1)-lucas_number1(n, 1, 1)))/(-2) for n in range(1, 32)] # Zerinvary Lajos, Jul 06 2008
(PARI) concat(0, Vec(-x / ((1 + x + x^2)*(1 + 3*x + x^2)) + O(x^30))) \\ Colin Barker, May 11 2019
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Oct 13 2005
STATUS
approved