The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094686 A Fibonacci convolution. 13
 1, 0, 1, 2, 2, 4, 7, 10, 17, 28, 44, 72, 117, 188, 305, 494, 798, 1292, 2091, 3382, 5473, 8856, 14328, 23184, 37513, 60696, 98209, 158906, 257114, 416020, 673135, 1089154, 1762289, 2851444, 4613732, 7465176, 12078909, 19544084, 31622993, 51167078 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Convolution of A000045 and A049347. Diagonal sums of number triangle A116088. - Paul Barry, Feb 04 2006 Let (b(n)) be the p-INVERT of (1,1,0,0,0,0,0,0,...) using p(S) = 1 - S^2; then b(n) = a(n+1) for n >=0. See A292324.  - Clark Kimberling, Sep 15 2017 LINKS Elena Barcucci, Antonio Bernini, Stefano Bilotta, Renzo Pinzani, Non-overlapping matrices, arXiv:1601.07723 [cs.DM], 2016 (see 1st column of Table 1 p. 8). Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2]. David Broadhurst, Multiple Deligne values: a data mine with empirically tamed denominators, arXiv:1409.7204 [hep-th], 2014 (see p. 10). Leonard Rozendaal, Pisano word, tesselation, plane-filling fractal, Preprint, 2017. Index entries for linear recurrences with constant coefficients, signature (0,1,2,1). FORMULA G.f. : 1/((1-x-x^2)*(1+x+x^2)); a(n) = sum{k=0..n, Fib(k+1)*2*sqrt(3)*cos(2*Pi*(n-k)/3+Pi/6)/3}; a(n)=a(n-2)+2a(n-3)+a(n-4). a(n) = A005252(n)-(-cos(2*Pi*n/3+Pi/3)/2-sqrt(3)*sin(2*Pi*n/3+Pi/3)/6+ sqrt(3)*cos(Pi*n/3+Pi/6)/6+sin(Pi*n/3+Pi/6)/2); a(n)=sum{k=0..floor(n/2), if(mod(n-k, 2)=0, binomial(n-k, k), 0)}; a(n) = A093040(n-1)-Fib(n); - Paul Barry, Jan 13 2005 a(n) = sum{k=0..floor(n/2), C(n-k, k)*(1+(-1)^(n-k))/2}; - Paul Barry, Sep 09 2005 a(n) = sum{k=0..floor(n/2), C(2k,n-2k)} = sum{k=0..floor(n/2), C(n-k,k)C(3k,n-k)/C(3k,k)}. - Paul Barry, Feb 04 2006 2*a(n) = A000045(n+1) + A049347(n). - R. J. Mathar, Feb 13 2020 MATHEMATICA LinearRecurrence[{0, 1, 2, 1}, {1, 0, 1, 2}, 40] (* Jean-François Alcover, Sep 21 2017 *) PROG (PARI) Vec(1/((1-x-x^2)*(1+x+x^2)) + O(x^50)) \\ Michel Marcus, Sep 27 2014 CROSSREFS Sequence in context: A082222 A058630 A095092 * A277752 A095054 A316210 Adjacent sequences:  A094683 A094684 A094685 * A094687 A094688 A094689 KEYWORD easy,nonn AUTHOR Paul Barry, May 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 26 08:42 EDT 2021. Contains 346294 sequences. (Running on oeis4.)