login
A293849
Expansion of e.g.f.: exp(Sum_{n>=1} n^(n-1)*x^n).
2
1, 1, 5, 67, 1825, 85661, 6208861, 643969495, 90484635137, 16538699920825, 3811890603086101, 1081079416534448651, 369888779067183276385, 150214056908992952336917, 71424576855634502660684525, 39304140073887410352909383071
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(Sum_{n>=1} n^(n-1)*x^n).
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k^k*a(n-k)/(n-k)! for n > 0.
a(n) ~ n! * n^(n-1). - Vaclav Kotesovec, Oct 18 2017
MATHEMATICA
nmax = 20; CoefficientList[Series[E^Sum[k^(k-1)*x^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
PROG
(PARI) {a(n) = n!*polcoeff(exp(sum(k=1, n, k^(k-1)*x^k)+x*O(x^n)), n)}
CROSSREFS
Cf. A293848.
Sequence in context: A166619 A323208 A262656 * A244589 A113064 A352860
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 17 2017
STATUS
approved