|
|
|
|
19, 57, 171, 513, 1539, 4617, 13851, 41553, 124659, 373977, 1121931, 3365793, 10097379, 30292137, 90876411, 272629233, 817887699, 2453663097, 7360989291, 22082967873, 66248903619, 198746710857, 596240132571, 1788720397713
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Since 19^3 = 3^3+10^3+18^3, the cube of any multiple of 19 can be written as the sum of three positive cubes: (19*k)^3 = (3*k)^3 + (10*k)^3 + (18*k)^3.
|
|
LINKS
|
Table of n, a(n) for n=0..23.
Index entries for linear recurrences with constant coefficients, signature (3).
|
|
FORMULA
|
G.f.: 19/(1-3*x). - R. J. Mathar, Aug 24 2011
|
|
MATHEMATICA
|
19*3^Range[0, 30] (* or *) NestList[3#&, 19, 30] (* Harvey P. Dale, Feb 03 2013 *)
|
|
PROG
|
(MAGMA) [19*3^n: n in [0..250]];
|
|
CROSSREFS
|
Subsequence of A023042.
Sequence in context: A093362 A341176 A251073 * A263336 A061973 A041702
Adjacent sequences: A176410 A176411 A176412 * A176414 A176415 A176416
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Apr 17 2010
|
|
EXTENSIONS
|
Comment edited by Jon E. Schoenfield, Jun 20 2010
|
|
STATUS
|
approved
|
|
|
|