login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176416
Fixed point of morphism 0->0PPMM00, P->0PPMM0P, M=0PPMM0M (where P=+1, M=-1)
3
0, 1, 1, -1, -1, 0, 0, 0, 1, 1, -1, -1, 0, 1, 0, 1, 1, -1, -1, 0, 1, 0, 1, 1, -1, -1, 0, -1, 0, 1, 1, -1, -1, 0, -1, 0, 1, 1, -1, -1, 0, 0, 0, 1, 1, -1, -1, 0, 0, 0, 1, 1, -1, -1, 0, 0, 0, 1, 1, -1, -1, 0, 1, 0, 1, 1, -1, -1, 0, 1, 0, 1, 1, -1, -1, 0, -1, 0, 1
OFFSET
0,1
COMMENTS
Turns by 120 degrees of a dragon curve (see fxtbook link below).
Also fixed point of morphism F->F0FPFPFMFMF0F, 0->0, P->P, M->M (after deleting all F).
Let d(n) be the lowest nonzero digit in the radix-7 expansion of (n+1), then if d(n)==[1,2,3,4,5,6] ==> a(n):=[0,+1,+1,-1,-1,0].
This is a 7-automatic sequence. - Joerg Arndt, Nov 09 2023
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), section 1.31.5 "Dragon curves based on radix-R counting", pp.95-101; image on p.98
MATHEMATICA
Nest[Flatten[ReplaceAll[#, {-1->{0, 1, 1, -1, -1, 0, -1}, 0->{0, 1, 1, -1, -1, 0, 0}, 1->{0, 1, 1, -1, -1, 0, 1}}]]&, {0}, 3] (* Paolo Xausa, Nov 09 2023 *)
PROG
(C++) /* CAT-algorithm */
int bit_dragon_r7_2_turn(unsigned long &x)
/* Increment the radix-7 word x and return (tr)
according to the lowest nonzero digit d of the incremented word:
d==[1, 2, 3, 4, 5, 6] ==> rt:=[0, +1, +1, -1, -1, 0] */
{
unsigned long s = 0;
while ( (x & 7) == 6 ) { x >>= 3; ++s; } /* scan over nines */
++x; /* increment next digit */
int tr = 2 - ( (0x2f58 >> (2*(x&7)) ) & 3 ); x <<= (3*s); /* shift back */
return tr;
}
CROSSREFS
Cf. A080846 (with terdragon curve), A014577 (with Heighway dragon), A175337 (with R5-dragon), and A176405 (with R7-dragon).
Sequence in context: A138886 A269528 A099859 * A102460 A080908 A131720
KEYWORD
sign
AUTHOR
Joerg Arndt, Apr 17 2010
STATUS
approved