login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176419
A symmetrical triangle sequence;q=4;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=1 - n! + n!*c(n, q)/(c[m, q)*c(n - m, q))/Binomial[n, m]
0
1, 1, 1, 1, 4, 1, 1, 37, 37, 1, 1, 487, 1405, 487, 1, 1, 8065, 69445, 69445, 8065, 1, 1, 163081, 4467745, 13564261, 4467745, 163081, 1, 1, 3926881, 357799681, 3486035233, 3486035233, 357799681, 3926881, 1, 1, 110058481, 34357076641
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 6, 76, 2381, 155022, 22825915, 7695523592, 5885796151305,
10048538573544970, 38025550094216572811,...}.
FORMULA
q=4;
c(n,q)=Product[1 - q^i, {i, 1, n}];
t(n,m,q)=1 - n! + n!*c(n, q)/(c[m, q)*c(n - m, q))/Binomial[n, m]
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 37, 37, 1},
{1, 487, 1405, 487, 1},
{1, 8065, 69445, 69445, 8065, 1},
{1, 163081, 4467745, 13564261, 4467745, 163081, 1},
{1, 3926881, 357799681, 3486035233, 3486035233, 357799681, 3926881, 1},
{1, 110058481, 34357076641, 1116606260881, 3583649359297, 1116606260881, 34357076641, 110058481, 1},
{1, 3522839041, 3848216934241, 428879890648801, 4591537656350401, 4591537656350401, 428879890648801, 3848216934241, 3522839041, 1},
{1, 126832003201, 492578856806401, 192149735821495201, 7054317360272016001, 23531630490651931201, 7054317360272016001, 192149735821495201, 492578856806401, 126832003201, 1}
MATHEMATICA
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] = 1 - n! + n!*c[n, q]/(c[m, q]*c[n - m, q])/Binomial[n, m];
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
CROSSREFS
Sequence in context: A209196 A158390 A228836 * A299471 A102602 A156951
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Apr 17 2010
STATUS
approved