login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156951
Triangle T(n, k, q) = t(n,q)/(t(k,q)*t(n-k,q)), where t(n, k) = Product_{j=1..n} q-Pochhammer(j, k+1, k+1)/(1-(k+1))^j and t(n, 0) = n!, with q = 2, read by rows.
4
1, 1, 1, 1, 4, 1, 1, 52, 52, 1, 1, 2080, 27040, 2080, 1, 1, 251680, 130873600, 130873600, 251680, 1, 1, 91611520, 5764196838400, 230567873536000, 5764196838400, 91611520, 1, 1, 100131391360, 2293297240551116800, 11099558644267405312000, 11099558644267405312000, 2293297240551116800, 100131391360, 1
OFFSET
0,5
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York, (1984), page 182.
FORMULA
T(n, k, q) = t(n,q)/(t(k,q)*t(n-k,q)), where t(n, k) = Product_{j=1..n} q-Pochhammer(j, k+1, k+1)/(1-(k+1))^j and t(n, 0) = n!, with q = 2.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 52, 52, 1;
1, 2080, 27040, 2080, 1;
1, 251680, 130873600, 130873600, 251680, 1;
1, 91611520, 5764196838400, 230567873536000, 5764196838400, 91611520, 1;
MATHEMATICA
t[n_, k_]= If[k==0, n!, Product[QPochhammer[k+1, k+1, j]/(-k)^j, {j, n}]];
T[n_, k_, q_]= t[n, q]/(t[k, q]*t[n-k, q]);
Table[T[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 08 2022 *)
PROG
(Sage)
from sage.combinat.q_analogues import q_pochhammer
def t(n, k): return factorial(n) if (k==0) else product( q_pochhammer(j, k+1, k+1)/(-k)^j for j in (1..n) )
def T(n, k, q): return t(n, q)/(t(k, q)*t(n-k, q))
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 08 2022
CROSSREFS
Cf. A007318 (q=0), A156950 (q=1), this sequence (q=2), A156952 (q=3).
Cf. A156953.
Sequence in context: A176419 A299471 A102602 * A357052 A121066 A343635
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 19 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 08 2022
STATUS
approved