login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099859 A Chebyshev transform of A006053 related to the knot 7_1. 1
0, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1, -1, -1, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The g.f. is the transform of the g.f. of A006053 under the Chebyshev mapping G(x)-> (1/(1+x^2))G(x/(1+x^2)). The denominator of the g.f. is a paramaterisation of the Alexander polynomial of 7_1. It is also the 14th cyclotomic polynomial.

LINKS

Table of n, a(n) for n=0..81.

FORMULA

G.f.: x(1+x^2)/(1-x+x^2-x^3+x^4-x^5+x^6); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*A006053(n-2k)}.

CROSSREFS

Cf. A099860.

Sequence in context: A161382 A138886 A269528 * A176416 A102460 A080908

Adjacent sequences:  A099856 A099857 A099858 * A099860 A099861 A099862

KEYWORD

easy,sign

AUTHOR

Paul Barry, Oct 28 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 03:02 EDT 2021. Contains 343121 sequences. (Running on oeis4.)