Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 30 2012 17:34:40
%S 1,1,1,1,-1,1,1,-19,-19,1,1,-27,-123,-27,1,1,89,-191,-191,89,1,1,57,
%T 297,57,297,57,1,1,-1807,-1471,3233,3233,-1471,-1807,1,1,-1935,-18959,
%U -1935,24945,-1935,-18959,-1935,1,1,29729,-9727,-81151,47873,47873,-81151
%N A symmetrical triangle of leading ones adjusted polynomial coefficients based on Hermite orthogonal polynomials: t(n,m)=CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1
%C Row sums are:
%C {1, 2, 1, -36, -175, -202, 767, -88, -20711, -26550, 337835,...}.
%C Sequence A176410 was discovered by a typing mistake;
%C I left out the plus signs and Mathematica made it multiplication instead.
%F t(n,m)=CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1
%e {1},
%e {1, 1},
%e {1, -1, 1},
%e {1, -19, -19, 1},
%e {1, -27, -123, -27, 1},
%e {1, 89, -191, -191, 89, 1},
%e {1, 57, 297, 57, 297, 57, 1},
%e {1, -1807, -1471, 3233, 3233, -1471, -1807, 1},
%e {1, -1935, -18959, -1935, 24945, -1935, -18959, -1935, 1},
%e {1, 29729, -9727, -81151, 47873, 47873, -81151, -9727, 29729, 1},
%e {1, 29217, 308577, 29217, -212703, 29217, -212703, 29217, 308577, 29217, 1}
%t t[n_, m_] := CoefficientList[HermiteH[n, x], x][[m + 1]] + Reverse[CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[HermiteH[n, x], x][[1]] + Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1;
%t Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
%t Flatten[%]
%K sign,tabl,uned
%O 0,8
%A _Roger L. Bagula_, Apr 16 2010