OFFSET
1,2
COMMENTS
Sums of rows of the triangle in A138530. - Reinhard Zumkeller, Mar 26 2008
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Digit Sum
FORMULA
a(n) = n^2-sum{k>0, sum{2<=p<=n, (p-1)*floor(n/p^k)}}.
a(n) = n^2-sum{2<=p<=n, (p-1)*sum{0<k<=log_p(n), floor(n/p^k)}}.
Lim a(n)/n^2 = 1 - Pi^2/12 for n-->oo.
G.f.: (1/(1-x))*(x(1+x)/(1-x)^2-sum{k>0,sum{j>1,(j-1)*x^(j^k)/(1-x^(j^k))}= }).
Also: (1/(1-x))*(x(1+x)/(1-x)^2-sum{m>1, sum{1<j,j|m, sum{k>0,j^(1/k) is an integer, j^(1/k)-1}}*x^m}).
a(n) = n^2-sum{1<m<=n,sum{k>0,sum{1<j,j|m, (j^(1/k)-1)(floor(j^(1/k))-floor((j-1)^(1/k)))}}}.
Recurrence: a(n)=a(n-1)-b(n)+2n-1, where b(n)=sum{1<j,j|n, sum{1<=k<=log_2(j),fract(j^(1/k))=0, j^(1/k)-1}} and fract(x)=fractional part of x=x-floor(x).
a(n) = sum{1<=p<=n, ds_p(n)} where ds_p = digital sum base p.
a(n) = A043306(n) + n (that sequence ignores unary) = A014837(n) + n + 1 (that sequence ignores unary and base n in which n is "10"). - Alonso del Arte, Mar 26 2009
EXAMPLE
5 = 11111(base 1) = 101(base 2) = 12(base 3) = 11(base 4) = 10(base 5). Thus a(5) = ds_1(5)+ds_2(5)+ds_3(5)+ds_4(5)+ds_5(5) = 5+2+3+2+1 = 13.
MATHEMATICA
Table[n + Total@ Map[Total@ IntegerDigits[n, #] &, Range[2, n]], {n, 56}] (* Michael De Vlieger, Jan 03 2017 *)
PROG
(PARI) a(n)=sum(i=2, n+1, vecsum(digits(n, i))); \\ R. J. Cano, Jan 03 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Jul 05 2007, Jul 15 2007, Jan 07 2009
STATUS
approved