login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A043306
Sum of all digits in all base-b representations for n, for 2 <= b <= n.
9
1, 3, 4, 8, 10, 16, 17, 21, 25, 35, 34, 46, 52, 60, 58, 74, 73, 91, 92, 104, 114, 136, 128, 144, 156, 168, 171, 199, 193, 223, 221, 241, 257, 281, 261, 297, 315, 339, 333, 373, 367, 409, 416, 430, 452, 498, 472, 508, 515, 547, 556, 608, 598, 638, 634, 670, 698, 756, 717, 777
OFFSET
2,2
LINKS
Robin Fissum, Digit sums and the number of prime factors of the factorial n!=1.2...n, Bachelor's project in BMAT, Norwegian University of Science and Technology, 2020.
Jan-Christoph Puchta and Jürgen Spilker, Altes und Neues zur Quersumme, Math. Semesterber., Vol. 49, No. 2 (2002), pp. 209-226; alternative link.
Vladimir Shevelev, Compact integers and factorials, Acta Arith., Vol. 126, No. 3 (2007), pp. 195-236 (see p. 205).
FORMULA
From Vladimir Shevelev, Jun 03 2011: (Start)
a(n) = (n-1)*n - Sum_{i=2..n} (i-1)*Sum_{r>=1} floor(n/i^r).
a(n) <= (n-1)^2*log(n+1)/log(n).
Problem: find a better upper estimate. (End)
From Amiram Eldar, Apr 16 2021: (Start)
a(n) = A014837(n) + 1.
a(n) ~ (1-Pi^2/12)*n^2 + O(n^(3/2)) (Fissum, 2020). (End)
EXAMPLE
5 = 101_2 = 12_3 = 11_4 = 10_5. Thus a(5) = 2 + 3 + 2 + 1 = 8.
MATHEMATICA
Table[Sum[Total[First[RealDigits[n, i]]], {i, 2, n}], {n, 2, 80}] (* Carl Najafi, Aug 16 2011 *)
PROG
(PARI) a(n) = sum(i=2, n, vecsum(digits(n, i))); \\ Michel Marcus, Jan 03 2017
(PARI) a(n) = sum(b=2, n, sumdigits(n, b)); \\ Michel Marcus, Aug 18 2017
(Python)
from sympy.ntheory.digits import digits
def a(n): return sum(sum(digits(n, b)[1:]) for b in range(2, n+1))
print([a(n) for n in range(2, 62)]) # Michael S. Branicky, Apr 04 2022
CROSSREFS
KEYWORD
nonn,base
STATUS
approved