login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A043000
Number of digits in all base-b representations of n, for 2 <= b <= n.
5
2, 4, 7, 9, 11, 13, 16, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47, 49, 51, 54, 56, 59, 61, 63, 65, 67, 70, 72, 74, 76, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126
OFFSET
2,1
COMMENTS
From A.H.M. Smeets, Dec 14 2019: (Start)
a(n)-a(n-1) >= 2 due to the fact that n = 10_n, so there is an increment of at least 2. If n can be written as a perfect power m^s, an additional +1 comes to it for the representation of n in each base m.
For instance, for n = 729 we have 729 = 3^6 = 9^3 = 27^2, so there is an additional increment of 3. For n = 1296 we have 1296 = 6^4 = 36^2, so there is an additional increment of 2. For n = 4096 we have 4096 = 2^12 = 4^6 = 8^4 = 16^3= 64^2, so there is an additional increment of 5. (End)
FORMULA
a(n) = Sum_{i=2..n} floor(log_i(i*n)); a(n) ~ 2*n. - Vladimir Shevelev, Jun 03 2011 [corrected by Vaclav Kotesovec, Apr 05 2021]
a(n) = A070939(n) + A081604(n) + A110591(n) + ... + 1. - R. J. Mathar, Jun 04 2011
From Ridouane Oudra, Nov 13 2019: (Start)
a(n) = Sum_{i=1..n-1} floor(n^(1/i));
a(n) = n - 1 + Sum_{i=1..floor(log_2(n))} floor(n^(1/i) - 1);
a(n) = n - 1 + A255165(n). (End)
If n is in A001597 then a(A001597(m)) - a(A001597(m)-1) = 2 + A253642(m), otherwise a(n) - a(n-1) = 2. - A.H.M. Smeets, Dec 14 2019
EXAMPLE
5 = 101_2 = 12_3 = 11_4 = 10_5. Thus a(5) = 3+2+2+2 = 9.
MAPLE
A043000 := proc(n) add( nops(convert(n, base, b)), b=2..n) ; end proc: # R. J. Mathar, Jun 04 2011
MATHEMATICA
Table[Total[IntegerLength[n, Range[2, n]]], {n, 2, 60}] (* Harvey P. Dale, Apr 23 2019 *)
PROG
(Magma) [&+[Floor(Log(i, i*n)):k in [2..n]]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
(Python)
def count(n, b):
c = 0
while n > 0:
n, c = n//b, c+1
return c
n = 0
while n < 50:
n = n+1
a, b = 0, 1
while b < n:
b = b+1
a = a + count(n, b)
print(n, a) # A.H.M. Smeets, Dec 14 2019
(PARI) a(n)=sum(b=2, n, #digits(n, b)) \\ Jeppe Stig Nielsen, Dec 14 2019
(PARI) a(n)= n-1 +sum(b=2, n, logint(n, b)) \\ Jeppe Stig Nielsen, Dec 14 2019
(PARI) a(n) = {2*n-2+sum(i=2, logint(n, 2), sqrtnint(n, i)-1)} \\ David A. Corneth, Dec 31 2019
(PARI) first(n) = my(res = vector(n)); res[1] = 2; for(i = 2, n, inc = numdiv(gcd(factor(i+1)[, 2]))+1; res[i] = res[i-1]+inc); res \\ David A. Corneth, Dec 31 2019
CROSSREFS
KEYWORD
nonn,easy,base
STATUS
approved