|
|
|
|
1, 2, 9, 11, 18, 19, 82, 83, 99, 100, 163, 164, 171, 173, 738, 740, 747, 748, 892, 893, 900, 902, 1467, 1469, 1476, 1477, 1540, 1541, 1557, 1558, 6643, 6644, 6660, 6661, 6724, 6725, 6732, 6734, 8028, 8030, 8037, 8038, 8101, 8102, 8118, 8119
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also: Numbers which, written in base 9, have only digits 0, 1 or 2, and no two adjacent digits equal. - M. F. Hasler, Feb 03 2014
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
From Robert Israel, Jan 29 2017: (Start)
If a(n) == 0 (mod 3) then a(2*n+1) = 9*a(n) + 1 else a(2*n+1) = 9*a(n).
If a(n) == 2 (mod 3) then a(2*n+2) = 9*a(n) + 1 else a(2*n+1) = 9*a(n)+2.
a(4k+5) = 9*a(2k+2).
(End)
|
|
MAPLE
|
A[1]:= [1, 2]:
for d from 2 to 6 do
A[d]:= map(t -> seq(9*t+j, j=subs(t mod 9 = NULL, [0, 1, 2])), A[d-1])
od:
seq(op(A[d]), d=1..6); # Robert Israel, Jan 29 2017
|
|
PROG
|
(PARI) is_A043307(n)=(n=[n])&&!until(!n[1], ((n=divrem(n[1], 9))[2]<3 && n[1]%3!=n[2])||return) \\ M. F. Hasler, Feb 03 2014
(PARI) a(n) = my(v=binary(n+1)); v[1]=0; for(i=2, #v, v[i]+=(v[i]>=v[i-1])); fromdigits(v, 9); \\ Kevin Ryde, Mar 13 2021
|
|
CROSSREFS
|
Cf. A043308 - A043320, A043291, A033001 - A033014, A033016 - A033029.
Sequence in context: A138759 A098934 A237877 * A049343 A131140 A022114
Adjacent sequences: A043304 A043305 A043306 * A043308 A043309 A043310
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|