|
|
A022114
|
|
Fibonacci sequence beginning 2 9.
|
|
8
|
|
|
2, 9, 11, 20, 31, 51, 82, 133, 215, 348, 563, 911, 1474, 2385, 3859, 6244, 10103, 16347, 26450, 42797, 69247, 112044, 181291, 293335, 474626, 767961, 1242587, 2010548, 3253135, 5263683, 8516818, 13780501, 22297319, 36077820, 58375139, 94452959, 152828098
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Ivan Panchenko, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1,1).
|
|
FORMULA
|
G.f.: (2+7*x)/(1-x-x^2). - Wesley Ivan Hurt, Jun 15 2014
a(n) = 10*F(n) + F(n-3). - J. M. Bergot, Jul 17 2017
a(n) = Fibonacci(n+5) - Lucas(n-2). - Greg Dresden and Christina Savory, Mar 01 2022
|
|
MATHEMATICA
|
LinearRecurrence[{1, 1}, {2, 9}, 40] (* Harvey P. Dale, Jul 16 2012 *)
CoefficientList[Series[(2 + 7 x)/(1 - x - x^2), {x, 0, 40}], x] (* Wesley Ivan Hurt, Jun 15 2014 *)
|
|
PROG
|
(Magma) a0:=2; a1:=9; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
|
|
CROSSREFS
|
Cf. A000032, A000045.
Sequence in context: A043307 A049343 A131140 * A041099 A041581 A042463
Adjacent sequences: A022111 A022112 A022113 * A022115 A022116 A022117
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Jun 14 1998
|
|
STATUS
|
approved
|
|
|
|