login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022111 Expansion of 1/((1-x)(1-5x)(1-6x)(1-8x)). 1
1, 20, 263, 2878, 28449, 264048, 2350651, 20332466, 172311557, 1438844836, 11885079999, 97387603014, 793247778025, 6432389826584, 51985193621507, 419076145997722, 3371967484999053, 27092843456412492 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (20,-137,358,-240)

FORMULA

a(n) = 256*8^n/21 -108*6^n/5 + 125*5^n/12 -1/140. - R. J. Mathar, Mar 11 2011

a(0)=1, a(1)=20, a(2)=263, a(3)=2878, a(n)=20*a(n-1)-137*a(n-2)+ 358*a(n-3)- 240*a(n-4). - Harvey P. Dale, Nov 04 2012

MATHEMATICA

CoefficientList[Series[1/((1-x)(1-5x)(1-6x)(1-8x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{20, -137, 358, -240}, {1, 20, 263, 2878}, 30] (* Harvey P. Dale, Nov 04 2012 *)

PROG

(MAGMA) I:=[1, 20, 263, 2878]; [n le 4 select I[n] else 20*Self(n-1)-137*Self(n-2)+358*Self(n-3)-240*Self(n-4): n in [1..25]]; /* or */ m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-5*x)*(1-6*x)*(1-8*x)))); // Vincenzo Librandi, Jul 12 2013

CROSSREFS

Sequence in context: A081244 A025966 A041764 * A025943 A025961 A208948

Adjacent sequences:  A022108 A022109 A022110 * A022112 A022113 A022114

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 13:27 EST 2016. Contains 279004 sequences.