login
A022109
Fibonacci sequence beginning 1, 19.
3
1, 19, 20, 39, 59, 98, 157, 255, 412, 667, 1079, 1746, 2825, 4571, 7396, 11967, 19363, 31330, 50693, 82023, 132716, 214739, 347455, 562194, 909649, 1471843, 2381492, 3853335, 6234827, 10088162, 16322989, 26411151, 42734140, 69145291, 111879431, 181024722
OFFSET
0,2
COMMENTS
a(n-1) = Sum(P(19;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=18. These are the SW-NE diagonals in P(19;n,k), the (19,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
FORMULA
a(n) = a(n-1)+a(n-2), n >= 2, a(0) = 1, a(1) = 19.
G.f.: (1+18*x)/(1-x-x^2).
MATHEMATICA
LinearRecurrence[{1, 1}, {1, 19}, 35] (* Paolo Xausa, Feb 22 2024 *)
PROG
(Magma) a0:=1; a1:=19; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
CROSSREFS
a(n) = A109754(18, n+1) = A101220(18, 0, n+1).
Sequence in context: A241849 A054304 A151979 * A041730 A041732 A041728
KEYWORD
nonn,easy
STATUS
approved