login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022107 Fibonacci sequence beginning 1, 17. 2
1, 17, 18, 35, 53, 88, 141, 229, 370, 599, 969, 1568, 2537, 4105, 6642, 10747, 17389, 28136, 45525, 73661, 119186, 192847, 312033, 504880, 816913, 1321793, 2138706, 3460499, 5599205, 9059704, 14658909 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n-1)=sum(P(17;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=16. These are the SW-NE diagonals in P(17;n,k), the (17,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

LINKS

Table of n, a(n) for n=0..30.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (1, 1).

FORMULA

a(n)= a(n-1)+a(n-2), n>=2, a(0)=1, a(1)=17. a(-1):=16.

G.f.: (1+16*x)/(1-x-x^2).

a(n) = 17*A000045(n) + A000045(n-1). [Paolo P. Lava, May 19 2015]

MAPLE

with(numtheory): with(combinat): P:=proc(q) local n;

for n from 0 to q do print(17*fibonacci(n)+fibonacci(n-1));

od; end: P(30); # Paolo P. Lava, May 19 2015

MATHEMATICA

a={}; b=1; c=17; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 12, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)

PROG

(MAGMA) a0:=1; a1:=17; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013

CROSSREFS

a(n) = A109754(16, n+1) = A101220(16, 0, n+1).

Sequence in context: A242975 A155561 A231505 * A041584 A041586 A041588

Adjacent sequences:  A022104 A022105 A022106 * A022108 A022109 A022110

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 23 01:18 EDT 2017. Contains 285313 sequences.