login
A022107
Fibonacci sequence beginning 1, 17.
2
1, 17, 18, 35, 53, 88, 141, 229, 370, 599, 969, 1568, 2537, 4105, 6642, 10747, 17389, 28136, 45525, 73661, 119186, 192847, 312033, 504880, 816913, 1321793, 2138706, 3460499, 5599205, 9059704, 14658909
OFFSET
0,2
COMMENTS
a(n-1)=sum(P(17;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=16. These are the SW-NE diagonals in P(17;n,k), the (17,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
FORMULA
a(n)= a(n-1)+a(n-2), n>=2, a(0)=1, a(1)=17. a(-1):=16.
G.f.: (1+16*x)/(1-x-x^2).
MATHEMATICA
a={}; b=1; c=17; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 12, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
LinearRecurrence[{1, 1}, {1, 17}, 40] (* Harvey P. Dale, Aug 04 2017 *)
PROG
(Magma) a0:=1; a1:=17; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
CROSSREFS
a(n) = A109754(16, n+1) = A101220(16, 0, n+1).
Sequence in context: A242975 A155561 A231505 * A041584 A041586 A041588
KEYWORD
nonn,easy
STATUS
approved