login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022104
Fibonacci sequence beginning 1, 14.
3
1, 14, 15, 29, 44, 73, 117, 190, 307, 497, 804, 1301, 2105, 3406, 5511, 8917, 14428, 23345, 37773, 61118, 98891, 160009, 258900, 418909, 677809, 1096718, 1774527, 2871245, 4645772, 7517017, 12162789
OFFSET
0,2
COMMENTS
a(n-1)=sum(P(14;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=13. These are the SW-NE diagonals in P(14;n,k), the (14,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
FORMULA
a(n)= a(n-1)+a(n-2), n>=2, a(0)=1, a(1)=14. a(-1):=13.
G.f.: (1+13*x)/(1-x-x^2).
MATHEMATICA
a={}; b=1; c=14; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 9, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 22 2008 *)
LinearRecurrence[{1, 1}, {1, 14}, 40] (* Harvey P. Dale, Jun 12 2017 *)
PROG
(Magma) a0:=1; a1:=14; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
CROSSREFS
a(n) = A109754(13, n+1) = A101220(13, 0, n+1).
Sequence in context: A087430 A085900 A075659 * A041398 A041919 A041400
KEYWORD
nonn,easy
STATUS
approved