|
|
A085900
|
|
Numbers k such that k-th cyclotomic polynomial has exactly 3 negative coefficients.
|
|
1
|
|
|
14, 15, 28, 30, 45, 56, 60, 75, 90, 98, 112, 120, 135, 150, 180, 196, 224, 225, 240, 270, 300, 360, 375, 392, 405, 448, 450, 480, 540, 600, 675, 686, 720, 750, 784, 810, 896, 900, 960, 1080, 1125, 1200, 1215, 1350, 1372, 1440, 1500, 1568, 1620, 1792, 1800, 1875
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
EXAMPLE
|
14 is a member because the 14th cyclotomic polynomial is P(x) = x^6-x^5+x^4-x^3+x^2-x+1 that has 3 negative coefficients. - Paolo P. Lava, Oct 26 2017
|
|
MAPLE
|
with(numtheory): P:=proc(n) local x;
if nops(select(x->x<0, [coeffs(cyclotomic(n, x))]))=3 then n; fi;
|
|
MATHEMATICA
|
Select[Range@ 2000, Count[CoefficientList[Cyclotomic[#, x], x], _?(# < 0 &)] == 3 &] (* Michael De Vlieger, Oct 26 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|