|
|
A085903
|
|
G.f.: (1 + 2*x^2)/((1 + x)*(1 - 2*x)*(1 - 2*x^2)).
|
|
3
|
|
|
1, 1, 7, 9, 31, 49, 127, 225, 511, 961, 2047, 3969, 8191, 16129, 32767, 65025, 131071, 261121, 524287, 1046529, 2097151, 4190209, 8388607, 16769025, 33554431, 67092481, 134217727, 268402689, 536870911, 1073676289, 2147483647
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Resultant of the polynomial x^n - 1 and the Chebyshev polynomial of the first kind T_2(x).
This sequence is the case P1 = 1, P2 = 0, Q = -2 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 27 2014
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n)).
a(n) = Product_{k = 1..n} ( 2 - exp(4*k*Pi*i/n) ). (End)
E.g.f.: exp(-x) + exp(2*x) - 2*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Jun 16 2016
|
|
MAPLE
|
seq(simplify((sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n)), n = 1..30); # Peter Bala, Apr 27 2014
|
|
MATHEMATICA
|
CoefficientList[ Series[(1 + 2x^2)/(1 - x - 4x^2 + 2x^3 + 4x^4), {x, 0, 30}], x] (* Robert G. Wilson v, May 04 2013 *)
LinearRecurrence[{1, 4, -2, -4}, {1, 1, 7, 9}, 40] (* Harvey P. Dale, Jul 25 2016 *)
|
|
PROG
|
Floretion Algebra Multiplication Program, FAMP Code: 4kbasekseq[A*B] with A = + .25'i + .25'j + .25'k + .25i' + .25j' + .25k' + .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' + .25e and B = + .5'i + .5i' + 'ii' + e - Creighton Dement, May 19 2005
(PARI) a(n) = polresultant(x^n - 1, 2*x^2 - 1) \\ (Wasserman)
(Magma) [Round((Sqrt(2)^n - 1)*(Sqrt(2)^n - (-1)^n)): n in [1..40]]; // Vincenzo Librandi, Apr 28 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|