Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Aug 24 2024 18:21:44
%S 1,1,7,9,31,49,127,225,511,961,2047,3969,8191,16129,32767,65025,
%T 131071,261121,524287,1046529,2097151,4190209,8388607,16769025,
%U 33554431,67092481,134217727,268402689,536870911,1073676289,2147483647
%N Expansion of (1 + 2*x^2)/((1 + x)*(1 - 2*x)*(1 - 2*x^2)).
%C Resultant of the polynomial x^n - 1 and the Chebyshev polynomial of the first kind T_2(x).
%C This sequence is the case P1 = 1, P2 = 0, Q = -2 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Apr 27 2014
%H Vincenzo Librandi, <a href="/A085903/b085903.txt">Table of n, a(n) for n = 1..1000</a>
%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
%H H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-2,-4).
%F a(2*n) = 2*4^n - 1, a(2*n + 1) = (2^n - 1)^2; interlaces A083420 with A060867 (squares of Mersenne numbers A000225). - _Creighton Dement_, May 19 2005
%F A107663(2*n) = a(2*n) = A083420(n). - _Creighton Dement_, May 19 2005
%F From _Peter Bala_, Apr 27 2014: (Start)
%F a(n) = (sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n).
%F a(n) = Product_{k = 1..n} ( 2 - exp(4*k*Pi*i/n) ). (End)
%F E.g.f.: exp(-x) + exp(2*x) - 2*cosh(sqrt(2)*x). - _Ilya Gutkovskiy_, Jun 16 2016
%p seq(simplify((sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n)), n = 1..30); # _Peter Bala_, Apr 27 2014
%t CoefficientList[ Series[(1 + 2x^2)/(1 - x - 4x^2 + 2x^3 + 4x^4), {x, 0, 30}], x] (* _Robert G. Wilson v_, May 04 2013 *)
%t LinearRecurrence[{1,4,-2,-4},{1,1,7,9},40] (* _Harvey P. Dale_, Jul 25 2016 *)
%o (PARI) a(n) = polresultant(x^n - 1, 2*x^2 - 1) \\ _David Wasserman_, Feb 10 2005
%o (Magma) [Round((Sqrt(2)^n - 1)*(Sqrt(2)^n - (-1)^n)): n in [1..40]]; // _Vincenzo Librandi_, Apr 28 2014
%o (Python)
%o def A085903(n): return (1<<n)-1 if n&1 else ((1<<(n>>1))-1)**2 # _Chai Wah Wu_, Jun 19 2024
%Y Cf. A083420, A028400, A062510, A088037, A107663.
%Y Cf. A060867. A100047.
%K nonn,easy
%O 1,3
%A Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003
%E More terms from _David Wasserman_, Feb 10 2005
%E Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 15 2007