The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154260 Numbers of the form m*(4*m +- 1)/2. 9
 0, 7, 9, 30, 34, 69, 75, 124, 132, 195, 205, 282, 294, 385, 399, 504, 520, 639, 657, 790, 810, 957, 979, 1140, 1164, 1339, 1365, 1554, 1582, 1785, 1815, 2032, 2064, 2295, 2329, 2574, 2610, 2869, 2907, 3180, 3220, 3507, 3549, 3850, 3894, 4209, 4255, 4584 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also integers of the form Sum_{k = 1..j} k/4 = j*(j + 1)/8. - Alonso del Arte, Jan 20 2012 Numbers h such that 32*h + 1 is a square. - Bruno Berselli, Mar 30 2014 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA From R. J. Mathar, Jan 07 2009: (Start) A139274 UNION A139275. a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). G.f.: x^2*(7 + 2x + 7x^2)/((1+x)^2*(1-x)^3). (End) From G. C. Greubel, Sep 08 2016: (Start) a(n) = (1/4)*(8*n^2 + 6*(-1)^n*n - 8*n - 3*(-1)^n + 3). E.g.f.: (1/4)*( (3 + 8*x^2)*exp(x) - 3*(1 + 2*x)*exp(-x) ). (End) From Amiram Eldar, Mar 17 2022: (Start) Sum_{n>=2} 1/a(n) = 8 - (sqrt(2)+1)*Pi. Sum_{n>=2} (-1)^n/a(n) = 2*sqrt(2)*log(sqrt(2)+1) - 8*(1-log(2)). (End) MATHEMATICA Select[Union[Flatten[Table[{n (4n - 1)/2, n (4n + 1)/2}, {n, 0, 199}]]], IntegerQ] (* Alonso del Arte, Jan 20 2012 *) PROG (PARI) print1(0); forstep(n=2, 1e2, 2, print1(", "n*(4*n-1)/2", "n*(4*n+1)/2)) \\ Charles R Greathouse IV, Jan 20 2012 (PARI) print1(s=0); for(n=1, 1e3, s+=n/4; if(denominator(s)==1, print1(s", "))) \\ Charles R Greathouse IV, Jan 20 2012 (Magma) k:=8; f:=func; [0] cat [f(n*m): m in [-1, 1], n in [1..25]]; // Bruno Berselli, Nov 14 2012 CROSSREFS Cf. A000217, A001318, A074378, A057569, A057570. Cf. similar sequences listed in A299645. Sequence in context: A263826 A066930 A247192 * A309199 A186234 A085903 Adjacent sequences:  A154257 A154258 A154259 * A154261 A154262 A154263 KEYWORD nonn,easy AUTHOR Vladimir Joseph Stephan Orlovsky, Jan 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 18:55 EDT 2022. Contains 356026 sequences. (Running on oeis4.)