OFFSET
1,2
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
O.g.f.: x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2).
E.g.f.: (1 + 2*x - (1 - 8*x^2)*exp(2*x))*exp(-x)/4.
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (8*n*(n - 1) - (2*n - 1)*(-1)^n - 1)/4 = (2*n + (-1)^n - 1)*(4*n - 3*(-1)^n - 2)/4. Therefore, 3 and 13 are the only prime numbers in this sequence.
a(n) + a(n+1) = 4*n^2 for even n, otherwise a(n) + a(n+1) = 4*n^2 - 1.
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=2} 1/a(n) = 8/25 + (sqrt(2)-1)*Pi/5.
Sum_{n>=2} (-1)^n/a(n) = 8*log(2)/5 - sqrt(2)*log(2*sqrt(2)+3)/5 - 8/25. (End)
MAPLE
seq((exp(I*Pi*x)*(1-2*x)+8*(x-1)*x-1)/4, x=1..50); # Peter Luschny, Feb 27 2018
MATHEMATICA
Table[(8 n (n - 1) - (2 n - 1) (-1)^n - 1)/4, {n, 1, 50}]
PROG
(PARI) vector(50, n, nn; (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4)
(PARI) concat(0, Vec(x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Feb 27 2018
(Sage) [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4 for n in (1..50)]
(Maxima) makelist((8*n*(n-1)-(2*n-1)*(-1)^n-1)/4, n, 1, 50);
(GAP) List([1..50], n -> (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4);
(Magma) [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4: n in [1..50]];
(Python) [(8*n*(n-1)-(2*n-1)*(-1)**n-1)/4 for n in range(1, 60)]
(Julia) [div((8n*(n-1)-(2n-1)*(-1)^n-1), 4) for n in 1:50] # Peter Luschny, Feb 27 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Feb 26 2018
STATUS
approved