login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299645 Numbers of the form m*(8*m + 5), where m is an integer. 6
0, 3, 13, 22, 42, 57, 87, 108, 148, 175, 225, 258, 318, 357, 427, 472, 552, 603, 693, 750, 850, 913, 1023, 1092, 1212, 1287, 1417, 1498, 1638, 1725, 1875, 1968, 2128, 2227, 2397, 2502, 2682, 2793, 2983, 3100, 3300, 3423, 3633, 3762, 3982, 4117, 4347, 4488, 4728, 4875 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently, numbers k such that 32*k + 25 is a square. This means that 4*a(n) + 3 is a triangular number.

Interleaving of A139277 and A139272 (without 0).

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

O.g.f.: x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2).

E.g.f.: (1 + 2*x - (1 - 8*x^2)*exp(2*x))*exp(-x)/4.

a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).

a(n) = (8*n*(n - 1) - (2*n - 1)*(-1)^n - 1)/4 = (2*n + (-1)^n - 1)*(4*n - 3*(-1)^n - 2)/4. Therefore, 3 and 13 are the only prime numbers in this sequence.

a(n) + a(n+1) = 4*n^2 for even n, otherwise a(n) + a(n+1) = 4*n^2 - 1.

MAPLE

seq((exp(I*Pi*x)*(1-2*x)+8*(x-1)*x-1)/4, x=1..50); # Peter Luschny, Feb 27 2018

MATHEMATICA

Table[(8 n (n - 1) - (2 n - 1) (-1)^n - 1)/4, {n, 1, 50}]

PROG

(PARI) vector(50, n, nn; (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4)

(PARI) concat(0, Vec(x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Feb 27 2018

(Sage) [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4 for n in (1..50)]

(Maxima) makelist((8*n*(n-1)-(2*n-1)*(-1)^n-1)/4, n, 1, 50);

(GAP) List([1..50], n -> (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4);

(MAGMA) [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4: n in [1..50]];

(Python) [(8*n*(n-1)-(2*n-1)*(-1)**n-1)/4 for n in range(1, 60)]

(Julia) [div((8n*(n-1)-(2n-1)*(-1)^n-1), 4) for n in 1:50] # Peter Luschny, Feb 27 2018

CROSSREFS

Cf. A139272, A139277.

Subsequence of A011861, A047222.

Cf. numbers of the form m*(8*m + h): A154260 (h=1), A014494 (h=2), A274681 (h=3), A046092 (h=4), this sequence (h=5), 2*A074377 (h=6), A274979 (h=7).

Sequence in context: A147105 A258774 A057589 * A180970 A135580 A166566

Adjacent sequences:  A299642 A299643 A299644 * A299646 A299647 A299648

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Feb 26 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 6 20:37 EST 2021. Contains 341850 sequences. (Running on oeis4.)