login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299647
Positive solutions to x^2 == -2 (mod 11).
1
3, 8, 14, 19, 25, 30, 36, 41, 47, 52, 58, 63, 69, 74, 80, 85, 91, 96, 102, 107, 113, 118, 124, 129, 135, 140, 146, 151, 157, 162, 168, 173, 179, 184, 190, 195, 201, 206, 212, 217, 223, 228, 234, 239, 245, 250, 256, 261, 267, 272, 278, 283, 289, 294, 300, 305, 311, 316
OFFSET
1,1
COMMENTS
Positive numbers congruent to {3, 8} mod 11.
Equivalently, interleaving of A017425 and A017485.
FORMULA
O.g.f.: x*(3 + 5*x + 3*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (-1 + 12*exp(x) - 11*exp(2*x) + 22*x*exp(2*x))*exp(-x)/4.
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 5*n - 2 + (2*n - (-1)^n - 3)/4.
a(n) = 4*n - 1 + floor((n - 1)/2) + floor((3*n - 1)/3).
a(n+k) - a(n) = 11*k/2 + (1 - (-1)^k)*(-1)^n/4.
a(n+k) + a(n) = 11*(2*n + k - 1)/2 - (1 + (-1)^k)*(-1)^n/4.
E.g.f.: 3 + ((22*x - 11)*exp(x) - exp(-x))/4. - David Lovler, Aug 08 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/22)*Pi/11. - Amiram Eldar, Feb 27 2023
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(3*Pi/22)/2.
Product_{n>=1} (1 + (-1)^n/a(n)) = sec(5*Pi/22)*sin(2*Pi/11). (End)
MATHEMATICA
Table[5 n - 2 + (2 n - (-1)^n - 3)/4, {n, 1, 60}]
CoefficientList[ Series[(3 + 5x + 3x^2)/((x - 1)^2 (x + 1)), {x, 0, 57}], x] (* or *)
LinearRecurrence[{1, 1, -1}, {3, 8, 14}, 58] (* Robert G. Wilson v, Mar 08 2018 *)
PROG
(PARI) vector(60, n, nn; 5*n-2+(2*n-(-1)^n-3)/4)
(Sage) [5*n-2+(2*n-(-1)^n-3)/4 for n in (1..60)]
(Maxima) makelist(5*n-2+(2*n-(-1)^n-3)/4, n, 1, 60);
(GAP) List([1..60], n -> 5*n-2+(2*n-(-1)^n-3)/4);
(Magma) [5*n-2+(2*n-(-1)^n-3)/4: n in [1..60]];
(Python) [5*n-2+(2*n-(-1)**n-3)/4 for n in range(1, 60)]
(Julia) [(11(2n-1)-(-1)^n)>>2 for n in 1:60] # Peter Luschny, Mar 07 2018
CROSSREFS
Subsequence of A106252, A279000.
Cf. A017497: positive solutions to x == -2 (mod 11).
Cf. A017437: positive solutions to x^3 == -2 (mod 11).
Nonnegative solutions to x^2 == -2 (mod j): A005843 (j=2), A001651 (j=3), A047235 (j=6), A156638 (j=9), this sequence (j=11).
Sequence in context: A140492 A184517 A028252 * A063617 A062550 A219930
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Mar 06 2018
STATUS
approved