login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062550 a(n) = Sum_{k = 1..2n} floor(2n/k). 3
0, 3, 8, 14, 20, 27, 35, 41, 50, 58, 66, 74, 84, 91, 101, 111, 119, 127, 140, 146, 158, 168, 176, 186, 198, 207, 217, 227, 239, 247, 261, 267, 280, 292, 300, 312, 326, 332, 344, 356, 368, 377, 391, 399, 411, 425, 435, 443, 459, 467, 482, 492, 502, 514, 528 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The sequence A006218 : Sum_{i=1..n} floor(n/i) = Sum_{i=1..n} sigma_0(i). Sigma_0(i) is A000005. Sequences of the type : Sum_{i=1..f(n)} floor(f(n)/i)= Sum_{i=1..f(n)} sigma_0(i). This sequence a(n)= A006218(2*n). [Ctibor O. Zizka, Mar 21 2009]

For n > 0: row sums of the triangle in A013942. - Reinhard Zumkeller, Jun 04 2013

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

FORMULA

a(n) = A006218(2n) = A056549(n)+A006218(n) = a(n-1)+A000005(2n-1)+A000005(2n)

MATHEMATICA

Table[Total[Floor[2*n/Range[2*n]]], {n, 0, 100}] (* T. D. Noe, Jun 12 2013 *)

PROG

(Haskell)

a062550 0 = 0

a062550 n = sum $ a013942_row n -- Reinhard Zumkeller, Jun 04 2013

(Python)

from math import isqrt

def A062550(n): return (lambda m: 2*sum(2*n//k for k in range(1, m+1))-m*m)(isqrt(2*n)) # Chai Wah Wu, Oct 09 2021

(PARI) a(n) = sum(k=1, 2*n, (2*n)\k); \\ Michel Marcus, Oct 09 2021

CROSSREFS

Cf. A013942, A156745, A085831, A153816, A153817, A153876.

Sequence in context: A028252 A299647 A063617 * A219930 A333962 A022947

Adjacent sequences: A062547 A062548 A062549 * A062551 A062552 A062553

KEYWORD

nonn

AUTHOR

Henry Bottomley, Jun 26 2001

EXTENSIONS

Data corrected for n > 30 by Reinhard Zumkeller, Jun 04 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 21:00 EST 2022. Contains 358648 sequences. (Running on oeis4.)