login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153876
a(n) = Sum_{i=2^(n-1)..2^n-1} sigma_0(i), sigma_0(i) number of divisors of n, n positive integer.
4
1, 4, 11, 29, 68, 160, 364, 820, 1813, 3981, 8674, 18782, 40387, 86443, 184232, 391188, 827787, 1746443, 3674573, 7712561, 16151933, 33757505, 70422235, 146659055, 304947023, 633152157, 1312820598, 2718674046, 5623413203, 11618957217, 23982175093, 49452872529
OFFSET
1,2
COMMENTS
This sequence tells how many binary numbers with n digits are there in the multiplication matrix [1,...,2^n -1]x[1,...,2^n -1]. In general, counting how many base-B numbers of length n are there in the multiplication matrix [1,...,B^n -1]x[1,...,B^n -1] gives a(n)= sum_{i=B^(n-1),(B^n)-1} sigma_0(i). Besides this motivation it is interesting to see the behavior of partial sums of sigma_0(i) on growing intervals : a(n)= sum_{i=f(n-1),f(n)} sigma_0(i).
LINKS
FORMULA
a(n) = A085831(n) - A085831(n-1)-1. - R. J. Mathar, Jan 05 2009
a(n) = Sum_{k>=1} k * A346730(n,k). - Alois P. Heinz, Aug 01 2021
PROG
(PARI) a(n) = sum(i=2^(n-1), 2^n-1, numdiv(i)); \\ Michel Marcus, Oct 10 2021
(Python)
from math import isqrt
def A153876(n): return ((t:=isqrt(b:=(1<<n-1)-1))+(s:=isqrt(a:=(1<<n)-1)))*(t-s)+(sum(a//k for k in range(1, s+1))-sum(b//k for k in range(1, t+1))<<1) # Chai Wah Wu, Oct 23 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ctibor O. Zizka, Jan 03 2009
EXTENSIONS
a(14)-a(32) from Alois P. Heinz, Aug 01 2021
STATUS
approved