|
|
A017485
|
|
a(n) = 11*n + 8.
|
|
22
|
|
|
8, 19, 30, 41, 52, 63, 74, 85, 96, 107, 118, 129, 140, 151, 162, 173, 184, 195, 206, 217, 228, 239, 250, 261, 272, 283, 294, 305, 316, 327, 338, 349, 360, 371, 382, 393, 404, 415, 426, 437, 448, 459, 470, 481, 492, 503, 514, 525, 536, 547, 558, 569, 580, 591, 602, 613
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*a(n-1) - a(n-2).
G.f.: (8 + 3*x)/(1-x)^2. (End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
LinearRecurrence[{2, -1}, {8, 19}, 60] (* Harvey P. Dale, May 10 2021 *)
|
|
PROG
|
(PARI) Vec((8+3*x)/(1-x)^2 + O(x^60)) \\ Colin Barker, Oct 05 2014
|
|
CROSSREFS
|
Powers of the form (11*n+8)^m: this sequence (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|