login
A017492
a(n) = (11*n + 8)^8.
12
16777216, 16983563041, 656100000000, 7984925229121, 53459728531456, 248155780267521, 899194740203776, 2724905250390625, 7213895789838336, 17181861798319201, 37588592026706176, 76686282021340161, 147578905600000000, 270281038127131201, 474373168346071296
OFFSET
0,1
LINKS
FORMULA
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (16777216 +16832568097*x +503851912407*x^2 +2690024212453*x^3 + 3790496103139*x^4 +1500946746723*x^5 +139306025317*x^6 +1475730007*x^7 + 6561*x^8)/(1-x)^9.
E.g.f.: (16777216 +16966785825*x +311074825567*x^2 +1011259856838*x^3 + 1057862922501*x^4 +451919091162*x^5 +86384857482*x^6 +7249227612*x^7 + 214358881*x^8)*exp(x). (End)
MAPLE
seq((11*n+8)^8, n=0..20); # G. C. Greubel, Sep 22 2019
MATHEMATICA
(11*Range[21] -3)^8 (* G. C. Greubel, Sep 22 2019 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {16777216, 16983563041, 656100000000, 7984925229121, 53459728531456, 248155780267521, 899194740203776, 2724905250390625, 7213895789838336}, 20] (* Harvey P. Dale, Jul 02 2024 *)
PROG
(PARI) vector(20, n, (11*n-3)^8) \\ G. C. Greubel, Sep 22 2019
(Magma) [(11*n+8)^8: n in [0..20]]; // G. C. Greubel, Sep 22 2019
(Sage) [(11*n+8)^8 for n in (0..20)] # G. C. Greubel, Sep 22 2019
(GAP) List([0..20], n-> (11*n+8)^8); # G. C. Greubel, Sep 22 2019
CROSSREFS
Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), this sequence (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).
Sequence in context: A017264 A017372 A016788 * A017624 A016812 A016908
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Sep 22 2019
STATUS
approved