login
A017493
a(n) = (11*n + 8)^9.
12
134217728, 322687697779, 19683000000000, 327381934393961, 2779905883635712, 15633814156853823, 66540410775079424, 231616946283203125, 692533995824480256, 1838459212420154507, 4435453859151328768, 9892530380752880769, 20661046784000000000, 40812436757196811351
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (134217728 +321345520499*x +16462162819970*x^2 +145056774666656*x^3 +353127201685502*x^4 +272712961891082*x^5 +64342728755486*x^6 + 3608087683520*x^7 +20660849954*x^8 +19683*x^9)/(1-x)^10.
E.g.f.: (134217728 +322553480051*x +9518879411085*x^2 +44883477211595*x^3 +66132730395270*x^4 +40107394890717*x^5 +11363589456450*x^6 + 1566417779322*x^7 +100319956308*x^8 +2357947691*x^9)*exp(x). (End)
MAPLE
seq((11*n+8)^9, n=0..20); # G. C. Greubel, Sep 22 2019
MATHEMATICA
(11Range[0, 10]+8)^9 (* Harvey P. Dale, Apr 06 2011 *)
PROG
(Maxima) makelist( (11*n+8)^9, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
(PARI) vector(20, n, (11*n-3)^9) \\ G. C. Greubel, Sep 22 2019
(Magma) [(11*n+8)^9: n in [0..20]]; // G. C. Greubel, Sep 22 2019
(Sage) [(11*n+8)^9 for n in (0..20)] # G. C. Greubel, Sep 22 2019
(GAP) List([0..20], n-> (11*n+8)^9); # G. C. Greubel, Sep 22 2019
CROSSREFS
Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), this sequence (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).
Sequence in context: A017073 A017265 A017373 * A017625 A122968 A323662
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Sep 22 2019
STATUS
approved