login
A017494
a(n) = (11*n + 8)^10.
12
1073741824, 6131066257801, 590490000000000, 13422659310152401, 144555105949057024, 984930291881790849, 4923990397355877376, 19687440434072265625, 66483263599150104576, 196715135728956532249, 523383555379856794624, 1276136419117121619201, 2892546549760000000000
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (1073741824 +6119255097737*x +523107326964509*x^2 +7264300786930496 *x^3 +28371531939645368*x^4 +37662294296897282*x^5 +17578871136786818* x^6 +2623025688296696*x^7 +92185633683584*x^8 +289254005437*x^9 +59049* x^10)/(1-x)^11.
E.g.f.: (1073741824 +6129992515977*x +289114470613111*x^2 +1944930239197330*x^3 +3932620229881585*x^4 +3254225912463141*x^5 + 1282086963575187*x^6 +258144995263320*x^7 +26861311378110*x^8 + 1355819922325*x^9 +25937424601*x^10)*exp(x). (End)
MAPLE
seq((11*n+8)^10, n=0..20); # G. C. Greubel, Sep 22 2019
MATHEMATICA
(11*Range[21] -3)^10 (* G. C. Greubel, Sep 22 2019 *)
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1073741824, 6131066257801, 590490000000000, 13422659310152401, 144555105949057024, 984930291881790849, 4923990397355877376, 19687440434072265625, 66483263599150104576, 196715135728956532249, 523383555379856794624}, 20] (* Harvey P. Dale, May 08 2022 *)
PROG
(PARI) vector(20, n, (11*n-3)^10) \\ G. C. Greubel, Sep 22 2019
(Magma) [(11*n+8)^10: n in [0..20]]; // G. C. Greubel, Sep 22 2019
(Sage) [(11*n+8)^10 for n in (0..20)] # G. C. Greubel, Sep 22 2019
(GAP) List([0..20], n-> (11*n+8)^10); # G. C. Greubel, Sep 22 2019
CROSSREFS
Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), this sequence (m=10), A017495 (m=11), A017496 (m=12).
Sequence in context: A017074 A017266 A017374 * A017626 A122971 A139571
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Sep 22 2019
STATUS
approved