login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017494
a(n) = (11*n + 8)^10.
12
1073741824, 6131066257801, 590490000000000, 13422659310152401, 144555105949057024, 984930291881790849, 4923990397355877376, 19687440434072265625, 66483263599150104576, 196715135728956532249, 523383555379856794624, 1276136419117121619201, 2892546549760000000000
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (1073741824 +6119255097737*x +523107326964509*x^2 +7264300786930496 *x^3 +28371531939645368*x^4 +37662294296897282*x^5 +17578871136786818* x^6 +2623025688296696*x^7 +92185633683584*x^8 +289254005437*x^9 +59049* x^10)/(1-x)^11.
E.g.f.: (1073741824 +6129992515977*x +289114470613111*x^2 +1944930239197330*x^3 +3932620229881585*x^4 +3254225912463141*x^5 + 1282086963575187*x^6 +258144995263320*x^7 +26861311378110*x^8 + 1355819922325*x^9 +25937424601*x^10)*exp(x). (End)
MAPLE
seq((11*n+8)^10, n=0..20); # G. C. Greubel, Sep 22 2019
MATHEMATICA
(11*Range[21] -3)^10 (* G. C. Greubel, Sep 22 2019 *)
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1073741824, 6131066257801, 590490000000000, 13422659310152401, 144555105949057024, 984930291881790849, 4923990397355877376, 19687440434072265625, 66483263599150104576, 196715135728956532249, 523383555379856794624}, 20] (* Harvey P. Dale, May 08 2022 *)
PROG
(PARI) vector(20, n, (11*n-3)^10) \\ G. C. Greubel, Sep 22 2019
(Magma) [(11*n+8)^10: n in [0..20]]; // G. C. Greubel, Sep 22 2019
(Sage) [(11*n+8)^10 for n in (0..20)] # G. C. Greubel, Sep 22 2019
(GAP) List([0..20], n-> (11*n+8)^10); # G. C. Greubel, Sep 22 2019
CROSSREFS
Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), this sequence (m=10), A017495 (m=11), A017496 (m=12).
Sequence in context: A017074 A017266 A017374 * A017626 A122971 A139571
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Sep 22 2019
STATUS
approved