login
A017491
a(n) = (11*n + 8)^7.
12
2097152, 893871739, 21870000000, 194754273881, 1028071702528, 3938980639167, 12151280273024, 32057708828125, 75144747810816, 160578147647843, 318547390056832, 594467302491009, 1054135040000000, 1789940649848551, 2928229434235008, 4637914326451397, 7140436495826944
OFFSET
0,1
FORMULA
G.f.: (2097152 +877094523*x +14777746344*x^2 +44705242061*x^3 +32487494736*x^4 +5260268829*x^5 +105396008*x^6 +2187*x^7)/(1-x)^8. - R. J. Mathar, Jun 24 2009
a(0)=2097152, a(1)=893871739, a(2)=21870000000, a(3)=194754273881, a(4)=1028071702528, a(5)=3938980639167, a(6)=12151280273024, a(7)=32057708828125, a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8). - Harvey P. Dale, Aug 14 2015
E.g.f.: (2097152 +891774587*x +10042176837*x^2 +21970631991*x^3 + 15695884050*x^4 +4432767724*x^5 +508438007*x^6 +19487171*x^7)*exp(x). - G. C. Greubel, Sep 22 2019
MAPLE
seq((11*n+8)^7, n=0..20); # G. C. Greubel, Sep 22 2019
MATHEMATICA
(11*Range[0, 20]+8)^7 (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {2097152, 893871739, 21870000000, 194754273881, 1028071702528, 3938980639167, 12151280273024, 32057708828125}, 20] (* Harvey P. Dale, Aug 14 2015 *)
PROG
(PARI) vector(20, n, (11*n-3)^7) \\ G. C. Greubel, Sep 22 2019
(Magma) [(11*n+8)^7: n in [0..20]]; // G. C. Greubel, Sep 22 2019
(Sage) [(11*n+8)^7 for n in (0..20)] # G. C. Greubel, Sep 22 2019
(GAP) List([0..20], n-> (11*n+8)^7); # G. C. Greubel, Sep 22 2019
CROSSREFS
Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), this sequence (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).
Sequence in context: A017071 A017263 A017371 * A017623 A195252 A017706
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Sep 22 2019
STATUS
approved