%I #41 Sep 08 2022 08:44:42
%S 8,19,30,41,52,63,74,85,96,107,118,129,140,151,162,173,184,195,206,
%T 217,228,239,250,261,272,283,294,305,316,327,338,349,360,371,382,393,
%U 404,415,426,437,448,459,470,481,492,503,514,525,536,547,558,569,580,591,602,613
%N a(n) = 11*n + 8.
%C a(n) = A125199(n+1,3) for n>1. - _Reinhard Zumkeller_, Nov 24 2006
%H G. C. Greubel, <a href="/A017485/b017485.txt">Table of n, a(n) for n = 0..1000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(n) = 22*n + 5 - a(n-1), with n>0, a(0)=8. - _Vincenzo Librandi_, Dec 24 2010
%F From _Colin Barker_, Oct 05 2014: (Start)
%F a(n) = 2*a(n-1) - a(n-2).
%F G.f.: (8 + 3*x)/(1-x)^2. (End)
%F E.g.f.: (8 + 11*x)*exp(x). - _G. C. Greubel_, Sep 21 2019
%p A017485:=n->11*n+8; seq(A017485(n), n=0..60); # _Wesley Ivan Hurt_, May 21 2014
%t Range[8, 1000, 11] (* _Vladimir Joseph Stephan Orlovsky_, May 29 2011 *)
%t LinearRecurrence[{2,-1},{8,19},60] (* _Harvey P. Dale_, May 10 2021 *)
%o (Magma) [11*n+8 : n in [0..60]]; // _Wesley Ivan Hurt_, May 21 2014
%o (PARI) Vec((8+3*x)/(1-x)^2 + O(x^60)) \\ _Colin Barker_, Oct 05 2014
%o (GAP) List([0..60], n-> 11*n+8); # _G. C. Greubel_, Sep 21 2019
%o (Sage) [11*n+8 for n in (0..60)] # _G. C. Greubel_, Sep 22 2019
%Y Cf. A002939, A016789, A017041, A125202.
%Y Powers of the form (11*n+8)^m: this sequence (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, Dec 11 1996