login
A017482
a(n) = (11*n + 7)^10.
12
282475249, 3570467226624, 420707233300201, 10485760000000000, 119042423827613001, 839299365868340224, 4297625829703557649, 17490122876598091776, 59873693923837890625, 179084769654285362176, 480682838924478847449, 1180591620717411303424, 2692452204196940400601
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (282475249 +3567359998885*x +381447629946032*x^2 +6054309522746024* x^3 +26248927783563266*x^4 +38310933951284930*x^5 +19699677304461320*x^6 +3287461918700048*x^7 +134823999028181*x^8 +576638856289*x^9 +1048576* x^10)/(1-x)^11.
E.g.f.: (282475249 +3570184751375*x +206783290661101*x^2 + 1539058236550670*x^3 +3317056068374290*x^4 +2872963553757759*x^5 +1172277747064347*x^6 +242804694252120 x^7 +25867757964675*x^8 +1332240445415*x^9 +25937424601*x^10)*exp(x). (End)
MAPLE
seq((11*n+7)^10, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[21] -4)^10 (* G. C. Greubel, Sep 19 2019 *)
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {282475249, 3570467226624, 420707233300201, 10485760000000000, 119042423827613001, 839299365868340224, 4297625829703557649, 17490122876598091776, 59873693923837890625, 179084769654285362176, 480682838924478847449}, 30] (* Harvey P. Dale, Apr 21 2020 *)
PROG
(Magma) [(11*n+7)^10: n in [0..10]]; // Vincenzo Librandi, Sep 04 2011
(PARI) vector(20, n, (11*n-4)^10) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+7)^10 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+7)^10); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), this sequence (m=10), A017483 (m=11), A017484 (m=12).
Sequence in context: A017158 A017254 A017362 * A017614 A267824 A185428
KEYWORD
nonn,easy
STATUS
approved