login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258774 a(n) = 1 + sigma(n) + sigma(n)^2. 3
3, 13, 21, 57, 43, 157, 73, 241, 183, 343, 157, 813, 211, 601, 601, 993, 343, 1561, 421, 1807, 1057, 1333, 601, 3661, 993, 1807, 1641, 3193, 931, 5257, 1057, 4033, 2353, 2971, 2353, 8373, 1483, 3661, 3193, 8191, 1807, 9313, 1981, 7141, 6163, 5257, 2353 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Robert Price, Table of n, a(n) for n = 1..10000

OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)

FORMULA

a(n) = 1 + A000203(n) + A000203(n)^2.

a(n) = 1 + A000203(n) + A072861(n). - Omar E. Pol, Jun 19 2015

MAPLE

with(numtheory): A258774:=n->1+sigma(n)+sigma(n)^2: seq(A258774(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015

MATHEMATICA

Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}]

Table[Cyclotomic[3, DivisorSigma[1, n]], {n, 10000}]

PROG

(MAGMA) [1+SumOfDivisors(n)+ SumOfDivisors(n)^2: n in [1..50]]; // Vincenzo Librandi, Jun 10 2015

(PARI) a(n)=my(s=sigma(n)); s^2+s+1 \\ Charles R Greathouse IV, Jun 10 2015

(Python)

from sympy import divisor_sigma

def A258774(n):

....return (lambda x: x*(x+1)+1)(divisor_sigma(n)) # Chai Wah Wu, Jun 10 2015

CROSSREFS

Cf. A000203 (sum of divisors of n).

Cf. A258775 (indices of primes in this sequence), A258776 (corresponding primes).

Sequence in context: A147351 A147097 A147105 * A057589 A299645 A180970

Adjacent sequences:  A258771 A258772 A258773 * A258775 A258776 A258777

KEYWORD

easy,nonn

AUTHOR

Robert Price, Jun 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 20:44 EDT 2020. Contains 333103 sequences. (Running on oeis4.)