login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258771
Expansion of psi(-x) * phi(x)^4 in powers of x where phi(), psi() are Ramanujan theta functions.
3
1, 7, 16, 7, -16, 0, 17, -48, -64, 16, 1, -16, 16, -32, 32, 55, -48, 64, 64, 16, 128, -9, -80, -32, 16, 48, -80, 96, 49, -144, -16, -144, -64, -64, -96, 144, 33, -64, -160, 0, 112, 32, 32, -96, 128, -25, 0, 32, -160, 304, 144, 96, 144, -48, 48, 119, 16, -256
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/8) * eta(q^2)^19 / (eta(q) * eta(q^4))^7 in powers of q.
Euler transform of period 4 sequence [ 7, -12, 7, -5, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (256 t)) = 1024 (t/i)^(5/2) f(t) where q = exp(2 Pi i t).
a(3*n + 2) = 16 * A258770(n).
Convolution square is A209942.
EXAMPLE
G.f. = 1 + 7*x + 16*x^2 + 7*x^3 - 16*x^4 + 17*x^6 - 48*x^7 - 64*x^8 + ...
G.f. = q + 7*q^9 + 16*q^17 + 7*q^25 - 16*q^33 + 17*q^49 - 48*q^57 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[EllipticTheta[ 3, 0, x]^4 QPochhammer[ x] / QPochhammer[ x^2, x^4], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^19 / (eta(x + A) * eta(x^4 + A) )^7, n))};
CROSSREFS
Sequence in context: A156377 A069526 A061039 * A063593 A070417 A101681
KEYWORD
sign
AUTHOR
Michael Somos, Jun 09 2015
STATUS
approved