OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-17/24) * eta(q^2)^4 * eta(q^3) * eta(q^12) / eta(q^6) in powers of q.
Euler transform of period 12 sequence [ 0, -4, -1, -4, 0, -4, 0, -4, -1, -4, 0, -5, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 - x^(3*k)) * (1 + x^(6*k)).
16 * a(n) = A258771(3*n + 2).
EXAMPLE
G.f. = 1 - 4*x^2 - x^3 + 2*x^4 + 4*x^5 + 8*x^6 - 2*x^7 - 5*x^8 - 9*x^9 + ...
G.f. = q^17 - 4*q^65 - q^89 + 2*q^113 + 4*q^137 + 8*q^161 - 2*q^185 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^4 QPochhammer[ x^3] / QPochhammer[ x^6, x^12], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n), polcoeff( eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^12 + A) / eta(x^6 + A), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 09 2015
STATUS
approved