login
A258772
Number of fixed points in the Collatz (3x+1) trajectory of n.
4
1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
OFFSET
1,12
COMMENTS
This sequence uses the definition in A006370: if n is odd, n -> 3n+1 and if n is even, n -> n/2.
The number 3 appears first at a(187561). Do all nonnegative numbers appear? See A258821.
EXAMPLE
For n = 5, the trajectory is T(5) = [5, 16, 8, 4, 2, 1]. Since the fourth term in this sequence is 4, this is a fixed point. Since there is only one fixed point, a(5) = 1.
For n = 6, the trajectory is T(6) = [6, 3, 10, 5, 16, 8, 4, 2, 1]. Here, the k-th term in this trajectory does not equal k for any possible k. So a(6) = 0.
MATHEMATICA
A258772[n_]:=Count[MapIndexed[{#1}==#2&, NestWhileList[If[OddQ[#], 3#+1, #/2]&, n, #>1&]], True]; Array[A258772, 100] (* Paolo Xausa, Nov 06 2023 *)
PROG
(PARI) Tvect(n)=v=[n]; while(n!=1, if(n%2, k=(3*n+1); v=concat(v, k); n=k); if(!(n%2), k=n/2; v=concat(v, k); n=k)); v
for(n=1, 200, d=Tvect(n); c=0; for(i=1, #d, if(d[i]==i, c++)); print1(c, ", "))
CROSSREFS
Sequence in context: A056620 A316869 A351961 * A178401 A357911 A280665
KEYWORD
nonn
AUTHOR
Derek Orr, Jun 09 2015
STATUS
approved