login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180970
Number of tatami tilings of a 3 X n grid (with monomers allowed).
4
1, 3, 13, 22, 44, 90, 196, 406, 852, 1778, 3740, 7822, 16404, 34346, 72004, 150822, 316076, 662186, 1387596, 2907262, 6091780, 12763778, 26744268, 56036566, 117413804, 246015450, 515476036, 1080072022, 2263070868, 4741795442
OFFSET
0,2
COMMENTS
A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.
REFERENCES
A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
LINKS
A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Monomer-Dimer Tatami Tilings of Rectangular Regions, Electronic Journal of Combinatorics, 18(1) (2011) P109.
Alejandro Erickson, Frank Ruskey, Mark Schurch, and Jennifer Woodcock, Auspicious tatami mat arrangements, arXiv:1103.3309 [math.CO], 2011. See p. 17.
FORMULA
G.f.: (1 + 2*x + 8*x^2 + 3*x^3 - 6*x^4 - 3*x^5 - 4*x^6 + 2*x^7 + x^8)/(1 - x - 2*x^2 - 2*x^4 + x^5 + x^6).
EXAMPLE
Below we show the a(2) = 13 tatami tilings of a 2 X 3 rectangle where v = square of a vertical dimer, h = square of a horizontal dimer, m = monomer:
hh hh hh hh hh hh vv vm vm mm mv mv mm
hh vv mv vm mm hh vv vv vm hh vv mv hh
hh vv mv vm hh mm hh mv hh hh vm hh mm
MATHEMATICA
Join[{1, 3, 13}, LinearRecurrence[{1, 2, 0, 2, -1, -1}, {22, 44, 90, 196, 406, 852}, 37]] (* Jean-François Alcover, Jan 29 2019 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) )); // G. C. Greubel, Apr 05 2021
(Sage)
def A180970_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) ).list()
A180970_list(40) # G. C. Greubel, Apr 05 2021
CROSSREFS
Cf. A180965 (2 X n grid), A192090 (4 X n grid), row sums of A272472.
Sequence in context: A258774 A057589 A299645 * A135580 A166566 A011533
KEYWORD
nonn
AUTHOR
Frank Ruskey, Sep 29 2010
STATUS
approved