OFFSET
0,2
COMMENTS
LINKS
FORMULA
a(n) = 8*n^2 + 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x*{c+8 + (8-c)*x}/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 3 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
Sum_{n>=1} 1/a(n) = (sqrt(2)-1)*Pi/10 - 4*log(2)/5 + sqrt(2)*log(sqrt(2)+1)/5 + 8/25. - Amiram Eldar, Mar 18 2022
E.g.f.: exp(x)*x*(13 + 8*x). - Elmo R. Oliveira, Dec 15 2024
MATHEMATICA
Table[n (8 n + 5), {n, 0, 50}] (* Bruno Berselli, Aug 22 2018 *)
LinearRecurrence[{3, -3, 1}, {0, 13, 42}, 50] (* Harvey P. Dale, Dec 04 2018 *)
PROG
(PARI) a(n)=n*(8*n+5) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Apr 26 2008
STATUS
approved