login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139278
a(n) = n*(8*n+7).
14
0, 15, 46, 93, 156, 235, 330, 441, 568, 711, 870, 1045, 1236, 1443, 1666, 1905, 2160, 2431, 2718, 3021, 3340, 3675, 4026, 4393, 4776, 5175, 5590, 6021, 6468, 6931, 7410, 7905, 8416, 8943, 9486, 10045, 10620, 11211, 11818, 12441, 13080
OFFSET
0,2
COMMENTS
Sequence found by reading the segment (0, 15) together with the line from 15, in the direction 15, 46, ..., in the square spiral whose vertices are the triangular numbers A000217.
FORMULA
a(n) = 8*n^2 + 7*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-1 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(x+15)/(1-x)^3.
E.g.f.: (8*x^2 + 15*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/49 + (sqrt(2)+1)*Pi/14 - 4*log(2)/7 - sqrt(2)*log(sqrt(2)+1)/7. - Amiram Eldar, Mar 17 2022
MATHEMATICA
Table[n (8 n + 7), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 15, 46}, 50] (* Harvey P. Dale, Oct 07 2015 *)
PROG
(PARI) a(n)=n*(8*n+7) \\ Charles R Greathouse IV, Jun 17 2017
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Apr 26 2008
STATUS
approved