OFFSET
0,2
COMMENTS
If Y is a fixed 3-subset of a (4n+1)-set X then a(n) is the number of (4n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Milan Janjic, Two Enumerative Functions.
Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 2*A007742(n).
a(n) = 16*n + a(n-1) - 6 with a(0) = 0. - Vincenzo Librandi, Aug 05 2010
G.f.: -2*x*(5+3*x)/(x-1)^3 . - R. J. Mathar, Feb 06 2017
E.g.f.: (8*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Amiram Eldar, Jul 22 2020: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/4 - 3*log(2)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/4 + sqrt(2)*arcsinh(1)/2 + log(2)/2 - 2. (End)
MAPLE
seq(binomial(4*n+1, 2), n=0..36); # Zerinvary Lajos, Jan 21 2007
MATHEMATICA
f[n_]:=2*n*(4*n+1); f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011 *)
PROG
(PARI) a(n)=2*n*(4*n+1) \\ Charles R Greathouse IV, Jun 16 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved