login
A033583
a(n) = 10*n^2.
34
0, 10, 40, 90, 160, 250, 360, 490, 640, 810, 1000, 1210, 1440, 1690, 1960, 2250, 2560, 2890, 3240, 3610, 4000, 4410, 4840, 5290, 5760, 6250, 6760, 7290, 7840, 8410, 9000, 9610, 10240, 10890, 11560, 12250, 12960, 13690, 14440, 15210, 16000, 16810
OFFSET
0,2
COMMENTS
Number of edges of a complete 5-partite graph of order 5n, K_n,n,n,n,n. - Roberto E. Martinez II, Oct 18 2001
10 times the squares. - Omar E. Pol, Dec 13 2008
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011
FORMULA
a(n) = 10*A000290(n) = 5*A001105(n) = 2*A033429(n). - Omar E. Pol, Dec 13 2008
a(n) = A158187(n) - 1. - Reinhard Zumkeller, Mar 13 2009
a(n) = 20*n + a(n-1) - 10 for n>0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = t(5*n) - 5*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(5*n) - 5*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/60.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/120.
Product_{n>=1} (1 + 1/a(n)) = sqrt(10)*sinh(Pi/sqrt(10))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(10)*sin(Pi/sqrt(10))/Pi. (End)
From Stefano Spezia, Jul 06 2021: (Start)
O.g.f.: 10*x*(1 + x)/(1 - x)^3.
E.g.f.: 10*exp(x)*x*(1 + x). (End)
MAPLE
seq(10*n^2, n=0..41); # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
10*Range[0, 50]^2 (* Harvey P. Dale, Apr 20 2011 *)
PROG
(PARI) a(n)=10*n^2 \\ Charles R Greathouse IV, Jun 17 2017
KEYWORD
nonn,easy
STATUS
approved