The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033584 a(n) = 11*n^2. 9
 0, 11, 44, 99, 176, 275, 396, 539, 704, 891, 1100, 1331, 1584, 1859, 2156, 2475, 2816, 3179, 3564, 3971, 4400, 4851, 5324, 5819, 6336, 6875, 7436, 8019, 8624, 9251, 9900, 10571, 11264, 11979, 12716 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of edges of the complete tripartite graph of order 7n, K_n,n,5n - Roberto E. Martinez II, Jan 07 2002 Number of edges of the complete tripartite graph of order 6n, K_n,2n,3n - Roberto E. Martinez II, Jan 07 2002 11 times the squares. - Omar E. Pol, Dec 13 2008 LINKS Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A000290(n)*11. - Omar E. Pol, Dec 13 2008 a(n) = 22*n+a(n-1)-11 (with a(0)=0) - Vincenzo Librandi, Aug 05 2010 From Amiram Eldar, Feb 03 2021: (Start) Sum_{n>=1} 1/a(n) = Pi^2/66. Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/132. Product_{n>=1} (1 + 1/a(n)) = sqrt(11)*sinh(Pi/sqrt(11))/Pi. Product_{n>=1} (1 - 1/a(n)) = sqrt(11)*sin(Pi/sqrt(11))/Pi. (End) EXAMPLE a(1)=22*1+0-11=11; a(2)=22*2+11-11=44; a(3)=22*3+44-11=99 - Vincenzo Librandi, Aug 05 2010 MATHEMATICA Table[11*n^2, {n, 0, 35}] (* Amiram Eldar, Feb 03 2021 *) PROG (PARI) a(n)=11*n^2 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A000290. Sequence in context: A022703 A061976 A070930 * A248126 A253445 A172526 Adjacent sequences:  A033581 A033582 A033583 * A033585 A033586 A033587 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 09:05 EDT 2021. Contains 347518 sequences. (Running on oeis4.)