The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033587 a(n) = 2*n*(4*n + 3). 11
0, 14, 44, 90, 152, 230, 324, 434, 560, 702, 860, 1034, 1224, 1430, 1652, 1890, 2144, 2414, 2700, 3002, 3320, 3654, 4004, 4370, 4752, 5150, 5564, 5994, 6440, 6902, 7380, 7874, 8384, 8910, 9452, 10010, 10584, 11174, 11780, 12402, 13040, 13694, 14364, 15050 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The inverse binomial transform is [0, 14, 16, 0, 0, 0, ...]. - R. J. Mathar, May 06 2008
Sequence found by reading the line from 0, in the direction 0, 14, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the even hexagonal numbers A014635 in the same spiral. - Omar E. Pol, Sep 03 2011
LINKS
FORMULA
a(n) = 2*A033954(n).
O.g.f.: 2*x*(7+x)/(1-x)^3. - R. J. Mathar, May 06 2008
a(n) = 16*n + a(n-1) - 2 with a(0)=0. - Vincenzo Librandi, Aug 05 2010
E.g.f.: (8*x^2 + 14*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Vaclav Kotesovec, Aug 18 2018: (Start)
Sum_{n>=1} 1/a(n) = 2/9 + Pi/12 - log(2)/2.
Sum_{n>=1} (-1)^n/a(n) = 2/9 - Pi/(6*sqrt(2)) - log(2)/6 + log(1+sqrt(2))/(3*sqrt(2)). (End)
MATHEMATICA
Table[2*n(4*n + 3), {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
LinearRecurrence[{3, -3, 1}, {0, 14, 44}, 80] (* Harvey P. Dale, Jun 05 2019 *)
PROG
(PARI) a(n)=2*n*(4*n+3) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A064125 A089031 A265152 * A189807 A009942 A031130
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 11:53 EDT 2024. Contains 372630 sequences. (Running on oeis4.)