The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033589 a(n) = (2*n-1)*(3*n-1)*(4*n-1). 2
 -1, 6, 105, 440, 1155, 2394, 4301, 7020, 10695, 15470, 21489, 28896, 37835, 48450, 60885, 75284, 91791, 110550, 131705, 155400, 181779, 210986, 243165, 278460, 317015, 358974, 404481, 453680, 506715 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=-1, a(1)=6, a(2)=105, a(3)=440. - Harvey P. Dale, Sep 22 2014 G.f.: (-1 +10*x +75*x^2 +60*x^3)/(1-x)^4. - R. J. Mathar, Feb 06 2017 From G. C. Greubel, Mar 05 2020: (Start) a(n) = n^3 * Pochhammer(2 - 1/n, 3) = Product_{j=2..4} (j*n-1). E.g.f.: (-1 + 7*x + 46*x^2 + 24*x^3)*exp(x). (End) MAPLE seq( mul(j*n-1, j=2..4), n=0..30); # G. C. Greubel, Mar 05 2020 MATHEMATICA Table[Times@@(n*Range[2, 4]-1), {n, 0, 30}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {-1, 6, 105, 440}, 30] (* Harvey P. Dale, Sep 22 2014 *) PROG (PARI) vector(31, n, my(m=n-1); prod(j=2, 4, j*m-1) ) \\ G. C. Greubel, Mar 05 2020 (MAGMA) [(2*n-1)*(3*n-1)*(4*n-1): n in [0..30]]; // G. C. Greubel, Mar 05 2020 (Sage) [product(j*n-1 for j in (2..4)) for n in (0..30)] # G. C. Greubel, Mar 05 2020 CROSSREFS Cf. A060747, A033568, A033590. Sequence in context: A285027 A184188 A112822 * A077289 A279520 A309378 Adjacent sequences:  A033586 A033587 A033588 * A033590 A033591 A033592 KEYWORD sign,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 08:18 EDT 2021. Contains 345162 sequences. (Running on oeis4.)