login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033590 a(n) = (2*n-1)*(3*n-1)*(4*n-1)*(5*n-1). 2
1, 24, 945, 6160, 21945, 57456, 124729, 238680, 417105, 680680, 1052961, 1560384, 2232265, 3100800, 4201065, 5571016, 7251489, 9286200, 11721745, 14607600, 17996121, 21942544, 26504985, 31744440 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

G.f.: (1 + 19*x + 835*x^2 + 1665*x^3 + 360*x^4)/(1-x)^5. - R. J. Mathar, Feb 06 2017

From G. C. Greubel, Mar 05 2020: (Start)

a(n) = n^4 * Pochhammer(2 - 1/n, 4) = Product_{j=2..5} (j*n-1).

E.g.f.: (1 + 23*x + 449*x^2 + 566*x^3 + 120*x^4)*exp(x). (End)

MAPLE

seq( mul(j*n-1, j=2..5), n=0..40); # G. C. Greubel, Mar 05 2020

MATHEMATICA

Table[(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1), {n, 0, 40}] (* G. C. Greubel, Mar 05 2020 *)

PROG

(PARI) vector(41, n, my(m=n-1); prod(j=2, 5, j*m-1) ) \\ G. C. Greubel, Mar 05 2020

(Magma) [(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1): n in [0..40]]; // G. C. Greubel, Mar 05 2020

(Sage) [product(j*n-1 for j in (2..5)) for n in (0..40)] # G. C. Greubel, Mar 05 2020

CROSSREFS

Cf. A060747, A033568, A033589.

Sequence in context: A220253 A262583 A001866 * A174586 A254619 A006175

Adjacent sequences:  A033587 A033588 A033589 * A033591 A033592 A033593

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 23:44 EDT 2022. Contains 357051 sequences. (Running on oeis4.)